
Implicit restart Lanczos as an eigensolver

Reza Rajaie Khorasani and Randall S. Dumont*
Department of Chemistry, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4M1, Canada

�Received 9 October 2008; revised manuscript received 7 January 2009; published 27 March 2009�

This paper investigates the efficiency of the implicit restart Lanczos and simple �without reorthogonaliza-
tion� Lanczos algorithms, as eigensolvers for large scale computations in molecular and chemical physics.
Using the cardioid billiard and the hydrogen cyanide/hydrogen isocyanide �HCN/HNC� molecule as model
systems we demonstrate superior efficiency of implicit restart Lanczos compared to the simple Lanczos algo-
rithm. A modified implementation of implicit restart Lanczos is also presented which works with a smaller
Krylov space—with associated savings in memory—and can handle larger basis sets than the usual implicit
restart Lanczos. It also enables getting all eigenpairs of a matrix, or all eigenvalues below a threshold �where
the number of such is not known before hand�, which is more difficult with the usual implicit restart algorithm.

DOI: 10.1103/PhysRevE.79.036708 PACS number�s�: 02.60.Dc, 03.65.Ge

I. INTRODUCTION

The Lanczos algorithm �1–3� has become one of the most
efficient and commonly used methods for large scale eigen-
value computations, with numerous applications in chemical
and molecular physics—see, for example �4–12�, �Ref. �11�
contains a very comprehensive review on Krylov subspace
methods in chemical physics�. The algorithm is an orthogo-
nal projection method for calculating a few �usually much
less than matrix size� extremal eigenvalues and associated
eigenvectors of large �usually� symmetric matrices. It relies
on repeated matrix-vector multiplies to produce a set of basis
vectors—the Lanczos vectors. The projection of a symmetric
matrix onto this subspace �Krylov subspace� generates a
symmetric tridiagonal matrix whose eigenvalues �called Ritz
values� approximate the eigenvalues of the original matrix.
There is never any need to store the full original matrix. All
that is necessary is a means for computing the matrix-vector
multiplies. In its simplest form the Lanczos algorithm is even
more memory efficient, since only two Lanczos vectors need
to be stored for computing eigenvalues. If eigenvectors are
also wanted then one has to either store all the Lanczos vec-
tors or the Lanczos iteration has to be repeated once the
eigenvalues are computed, which is a considerable amount of
extra work �13�. It is well known that in finite precision
arithmetic Lanczos vectors lose orthogonality after a number
of steps and spurious eigenvalues are generated. One solu-
tion to this problem, suggested by Cullum and Willoughby
�1�, is to identify and eliminate the spurious eigenvalues �this
method is hereafter referred to as CWL�. However, loss of
orthogonality increases the size of the Krylov subspace nec-
essary to span the space of the eigenvectors, and many more
Lanczos iterations are required to converge the eigenvalues
of interest. Another approach is to store the Lanczos vectors
and use reorthogonalization methods to correct for the loss of
orthogonality and reduce the size of the Krylov subspace.
Although CWL �i.e., the simple Lanczos algorithm, without
any reorthogonalization and without storing the Lanczos vec-

tors� is more memory efficient, it is less cpu time efficient
since it requires �often substantially� more matrix-vector
multiplies. When Lanczos vectors are stored and reorthogo-
nalized, eigenvectors are obtained with almost the same cost
in cpu time as just computing eigenvalues. However, storing
all the Lanczos vectors can have prohibitively large memory
requirements. Moreover, as the iteration proceeds and the
size of the Krylov subspace increases, maintaining orthogo-
nality with respect to all previous Lanczos vectors becomes
more and more costly. Restarting Lanczos methods �14–19�
have been developed to address this problem. Restarting al-
gorithms keep the size of the Krylov subspace fixed and
restart the iteration after a predetermined number of steps.
Implicit restart Lanczos �IRL� �3,19�, as implemented in AR-
PACK96 �20�, is one of the most widely used restart algo-
rithms. IRL calculates k of the largest or smallest eigenvalues
and associated eigenvectors using a Krylov subspace of size
m=k+ p. The algorithm contracts the Krylov subspace of
size m to a Krylov subspace of size k and restarts the itera-
tions at step k+1. The contractions are done so as to filter the
Krylov subspace and generate a subspace richer in the
wanted eigenvalues. The process is continued until all k
wanted eigenvalues have converged. The storage require-
ment of IRL is limited by the need to store m Lanczos vec-
tors, where m is much less than the size of the original ma-
trix. The reorthogonalization cost is also limited to keeping
m vectors orthogonal. In the simplest implementation of IRL,
the number of wanted eigenvalues, k, and the total size of the
Krylov subspace, m, are fixed numbers.

Due to its memory efficiency CWL has become the most
commonly used of the Lanczos algorithms for large scale
eigenvalue computations in the molecular and chemical
physics community �4–7,9,10�. Although it is memory effi-
cient and much appreciated, our investigations show that
CWL suffers from a number of deficiencies as compared to
IRL, especially for complex symmetric matrices. �1� CWL is
much slower than IRL. �2� It is not as reliable as IRL. We
found that when the number of wanted eigenvalues is not
small, CWL often misses eigenvalues. CWL is even less re-
liable for complex symmetric matrices �note that complex
symmetric matrices require the complex symmetric version
of the Lanczos algorithm �1� and have complex eigenvalues�.
The reduced reliability of CWL for complex symmetric ma-

*Author to whom correspondence should be addressed. FAX:
905-522 2509; dumontr@mcmaster.ca

PHYSICAL REVIEW E 79, 036708 �2009�

1539-3755/2009/79�3�/036708�10� ©2009 The American Physical Society036708-1

http://dx.doi.org/10.1103/PhysRevE.79.036708


trices is also noted by Cullum and Willoughby �1�. �3� While
for real symmetric matrices a bisection algorithm can be
implemented to obtain the eigenvalues of the tridiagonal ma-
trix in the energy range of interest, all eigenvalues of the
tridiagonal matrix have to be computed in the case of com-
plex symmetric matrices. Since without reorthogonalization
the tridiagonal matrix can be very large, this step adds sig-
nificantly to the required cpu time.

Although IRL, as implemented in ARPACK96, is widely
used and very efficient, it also has limitations. �1� If the size
of the original matrix, N, is very large �i.e., the number of the
original basis vectors is very large� storing m Lanczos vec-
tors of size N might not be possible. �2� It is not possible to
calculate all eigenvalues using IRL. Since IRL keeps the
Lanczos vectors orthogonal, the total size of the Krylov sub-
space, m, cannot exceed the size of the original space, N. So
the best IRL can achieve is to calculate k eigenvalues, such
that k+ p=m=N. Decreasing p, the unwanted portion of the
Krylov subspace, to make k approach N, increases the num-
ber of required restarts. Usually, p is chosen greater than or
equal to k �19,21,22�. In practice IRL works best when ex-
tremal eigenvalues and eigenvectors are wanted such that k
�N. �3� To implement IRL one must know the desired num-
ber of eigenvalues and eigenvectors, k. Often, this is not
known. For example, all eigenvalues of a Hamiltonian ma-
trix below a certain energy are typically desired. This num-
ber of such eigenvalues is generally not known beforehand,
although it can be estimated via the Weyl formula �23�.

In this paper, using the cardioid billiard model, we inves-
tigate the performance of real symmetric versions of CWL
and IRL as eigensolvers. The cardioid eigenvalues are com-
puted using Robnik’s conformal mapping method �24�. CWL
and IRL provide the requisite eigensolver. Even though the
cardioid is just a two-dimensional system, because of the
shape of its boundary—most notably its cusp, it is a chal-
lenging system for eigenvalue computations. Specifically,
large basis sets are required to get converged energy eigen-
values. Furthermore, since the number of eigenvalues we
seek—6000—is very large, the problem poses a special chal-
lenge for iterative methods. This is where IRL finds a niche.
It is very difficult to converge the 6000 lowest eigenvalues
using CWL, and be sure not to have missed any. CWL begins
to miss eigenvalues after the first 500, and it is difficult to
test and correct for the missing eigenvalues.

We also compared IRL to CWL in computations of rovi-
brational energy levels of the molecule, hydrogen cyanide/
hydrogen isocyanide �HCN/HNC�. Even when just 100 en-
ergy levels are desired, IRL is still faster than CWL—though
by not such a large margin. The advantage of IRL is greatest
for levels with J�0 for which a larger basis is required.

The above mentioned limitations of IRL are addressed via
a variation in IRL, which we call sequential implicit restart
Lanczos �SIRL�. SIRL employs an alternating sequence of
IRL and deflation �3,25� steps which afford a smaller Krylov
space—thereby reducing memory requirements. It can be
made to work with larger basis sets than is possible with
IRL, and can be formulated to get all eigenvalues �and eigen-
vectors�, or all eigenvalues below an energy threshold even
when the number of such is not known. Deflation is well
known, and used in combination with implicit restart Lanc-

zos elsewhere �3�. The key advantage of our use of
deflation—in SIRL—is the efficient use of writing to disk to
make very large scale eigensystems accessible. This paper is
organized as follows. In Sec. II, we briefly review the Lanc-
zos and IRL algorithms and present the SIRL algorithm. In
Sec. III, the algorithms are applied to the cardioid billiard
model and numerical results are discussed. In the Appendix,
we review a modern alternative to inverse iteration for cal-
culating eigenvectors of a tridiagonal matrix �26�, which to
our knowledge has not been used before in the chemical and
molecular physics communities. According to Fernando �26�,
the algorithm addresses significant shortcomings of inverse
iteration. Our observations support these claims.

It should be mentioned that Lanczos algorithms are well
suited for basis diagonalization methods, such as Robnik’s,
for calculating eigenpairs of billiards systems. These meth-
ods require large scale eigenvalue computations which can
be done very efficiently with Lanczos, making them com-
petitive with the Green’s function matching methods �27,28�.

II. LANCZOS ALGORITHMS

In this section we describe the Lanczos, implicit restart
Lanczos, and sequential implicit restart Lanczos algorithms
for the computation of eigenvalues of a real symmetric ma-
trix A. The basic Lanczos iteration starts with an arbitrary
initial vector and generates a set of basis vectors v j for a
Krylov subspace, one vector at a time. Concurrently, it gen-
erates a symmetric tridiagonal matrix T—the associated
Lanczos representation of A. After m steps, we have

AVm = VmTm + rmem
T , �1�

where

Tm = �
�1 �1 0 ¯ 0

�1 �2 �2 � ]

0 �2 � � 0

] � � � �m−1

0 ¯ 0 �m−1 �m

� ,

Vm = �v1v2 . . . vm� ,

and the residual vector,

rm = �mvm+1.

em
T is the mth unit row vector.

The eigenvalues of Tm,

Tmxi = �ixi, �2�

approximate the eigenvalues of A. An eigenvalue, �i, is con-
sidered converged if

�Ayi − �iyi� = ��AVm − VmT�xi� = ��mxim� � � , �3�

where yi=Vmxi. The pair, �yi ,�i�, approximates the eigenpair
of A. yi is called the Ritz vector and �i the Ritz value of A.
Note that xim can be computed without determining all re-
maining elements of the eigenvectors, xi. This is useful when
one just wants eigenvalues. If eigenvectors are also desired,

REZA RAJAIE KHORASANI AND RANDALL S. DUMONT PHYSICAL REVIEW E 79, 036708 �2009�

036708-2



after the eigenvalues have converged, the xi can be computed
using inverse iteration or the direct method �26� described in
the Appendix. Although a direct method based on the recur-
sion relation between the elements of xi,

�k−1xik−1 + ��k − �i�xik + �kxik+1 = 0,

has been applied before in the chemical physics literature
�29,30�, we found that method to be unstable, yielding cata-
strophic error for some eigenvector components. The method
we use �see Appendix� is accurate, completely stable, and
very efficient. The former attribute is critical to SIRL which
performs reorthogonalizations with respect to computed Ritz
vectors—see below.

Algorithm 1 is an m step Lanczos algorithm with reor-
thogonalization �31�. The iteration begins with an arbitrary
starting vector. In the reorthogonalization step the residual
vector, r, is tested for loss of orthogonality and if necessary
orthogonalized against all previous Lanczos vectors. This
step can be repeated a couple of times if necessary, although
usually once is enough. A larger value of � enforces a more
stringent orthogonality condition. Lehousq and Sorensen �3�
suggest �=1. If after a few times �e.g., five� a proper residual
vector has not been generated, r is set to a random vector and
orthogonalized with respect to the previous Lanczos vectors,
� j is set to zero and � j is set to its value before reorthogo-
nalization. This step is rarely necessary. Once the tridiagonal
matrix, Tm, is constructed, its eigenvalues are computed and
checked for convergence. If necessary the iteration is contin-
ued. Setting �=0 reduces the algorithm to Lanczos without
reorthogonalization.

The implicit restart Lanczos algorithm �algorithm 2; see
Ref. �31�� starts with an m=k+ p step Lanczos iteration, con-
structed using algorithm 1. k is the number of wanted eigen-
values �smallest or largest algebraically or in magnitude� and
p is a positive number.

AVm = VmTm + rmem
T . �4�

The eigenvalues of Tm are computed and checked for con-
vergence. If the k wanted eigenvalues have not converged, p
shifts are selected based on the unwanted eigenvalues. A
natural choice is to use the unwanted eigenvalues themselves
as shifts. Using an implicit shift QR factorization, Eq. �4� is
transformed to

AV̂m = V̂mT̂m + rmem
T Qm, �5�

where V̂m=VmQm and T̂m=Qm
T TmQm. Because of the struc-

ture of the residual term, rmem
T Qm, Eq. �5� is not a Lanczos

factorization. However, since Qm is the product of a se-
quence of “adjacent” �i , i+1� Givens rotations, i=1 to m−1,
it is tridiagonal. The product of p such tridiagonals is banded
with 2p+1 nonzero diagonals. As such, the first k−1 ele-
ments of em

T Qm are zero, and the first k columns of Eq. �5�
therefore constitute a k step Lanczos factorization. It can be
shown �21,32� that this updated Lanczos factorization corre-
sponds to a better initial vector, v̂1, such that v̂1 can be writ-
ten as P�A�v1, where P is a polynomial of degree p with the
shifts as zeros �i.e., the updated Lanczos factorization will be
richer in the wanted eigenspace�.

AVk = VkTk + rkek
T, �6�

where Vk= V̂m�1:N ,1 :k�, Tk= T̂m�1:k ,1 :k�, and rk= v̂k+1�̂k
+rmQm�m ,k�. Note that N is the number of original basis
functions. Beginning with Eq. �6�, p additional Lanczos steps
are computed �step 7 of algorithm 2� to construct a new
Lanczos factorization of size m. The factorization is con-
structed as in algorithm 1, except that it begins at step k+1
and the starting vector r is not an arbitrary vector but the
updated residual from Eq. �6�. Once again, the eigenvalues
of Tm are computed and tested for convergence. This process
is continued until the k wanted eigenvalues have converged.
The corresponding eigenvectors can be computed in the end
using the methods mentioned above. The actual implementa-
tion of IRL is more involved than described here. The reader
is referred to Refs. �3,19,20� for further details.

SIRL is a simple adaptation of IRL. Yet, it enables work-
ing with a smaller Krylov subspace and can handle much
larger basis sets. To calculate k eigenvalues and eigenvectors,
IRL requires a Krylov subspace of size m=k+ p, where typi-
cally p	k �19,21,22�. In principle, p can be any positive
number. However, a too small p will slow down convergence
and increase the number of restarts required. The idea behind
our modification is to obtain the k wanted eigenvalues and
eigenvectors in successive sets of k�. Each set of k� eigen-
values is obtained using IRL. For each set we work with a
Krylov subspace of size m�=k�+ p�, where m��m, k��k,
and p�� p, and for each set �except the first� the Krylov
subspace is kept orthogonal to the eigenvectors computed
from previous sets, Y= �y1 ,y2 , . . . ,yt�. For example, to com-
pute 1000 eigenvalues using IRL, with p=k one requires a
Krylov subspace of size 2000. Using SIRL, with k�= p�
=200 one constructs a Krylov subspace of 400 Lanczos vec-
tors and obtains the first 200 Ritz pairs. The 200 Ritz vectors
can be stored on disk to be read when necessary. The second
200 eigenvalues are then obtained from a second Krylov sub-
space �of size 400� kept orthogonal to the previous set of
Ritz vectors. The process is continued until all 1000 eigen-
pairs have been computed. So, SIRL consists of a sequence
of IRL steps with the associated algorithm 1 modified to
account for the previously converged Ritz vectors—i.e., they
are deflated from the Krylov space. Algorithm 1� is the
modified Lanczos algorithm used in SIRL �31�. It involves
orthogonalizing the arbitrary starting vector, r, against previ-
ously converged Ritz vectors and repeating the selective or-
thogonalization after every reorthogonalization step. SIRL
can be thought of as IRL with a systematic deflation of the
previously converged eigenspace. It is different from the
usual implementations of deflation, which are typically em-
ployed within a single IRL step �or related algorithm�. �3� In
SIRL, deflation occurs after each implementation of an IRL
step, i.e., the converged eigenvalues are deflated from the
next IRL step for the following k� eigenvalues. The key to
SIRL is that k� can be chosen to be much smaller than k,
without sacrificing performance. We typically use k�=k /5.
As such, the storage required for Lanczos vectors is reduced
to 1/5th its value with IRL. Now, this memory savings is
mitigated by the requirement of saving all the converged Ritz
vectors. However, because the latter can be written to and

IMPLICIT RESTART LANCZOS AS AN EIGENSOLVER PHYSICAL REVIEW E 79, 036708 �2009�

036708-3



read from disk in blocks, SIRL affords much larger scale
computations than IRL.

Note that the extra selective reorthogonalization, i.e., or-
thogonalizing against previously converged Ritz vectors, Y
= �y1 ,y2 , . . . ,yt�, does not increase the orthogonalization cost
in each step compared to IRL. The number of vectors or-
thogonalized against �only in the last IRL step within SIRL�
and the total number of vectors that have to be stored, are the
same for both algorithms, except that in IRL all these vectors
are Lanczos vectors whereas in SIRL they are both Lanczos
vectors and converged Ritz vectors. Using the Ritz vectors
enables dividing the Krylov subspace and obtaining the ei-
genvalues in sets. SIRL is also more flexible in memory us-
age in that the converged Ritz vectors can be stored on disk
and read from file, in blocks, when necessary. This flexibility
in memory usage together with the smaller Krylov subspace
�m�m�� enables SIRL to handle larger basis sets than pos-
sible with IRL. For example, in Sec. III we report 6000 ei-
genvalues computed with SIRL. The limit for IRL, on the
computer used for the study, is about 3000. We are currently
approaching our goal of 10 000 cardioid eigenvalues—the
estimated number needed for a semiclassical statistical
analysis of the spectrum proposed by Sakr �33�.

Two points should be noted. �1� It is not possible to
implement IRL in sets, using the previous Lanczos vectors

instead of the previous Ritz vectors to divide the Krylov
subspace. In a Lanczos factorization of size m it is not
known which Lanczos vectors correspond to the space of the
converged eigenpairs. In fact, if more than just a few Ritz
vectors are desired, the full set of Lanczos vectors is gener-
ally required to represent them. However, this set also repre-
sents unconverged Ritz vectors that have no utility in selec-
tive reorthogonalization. �2� One might be inclined to make
IRL more flexible in memory usage by storing the Lanczos
vectors on disk. However, IRL does not lend itself easily to
such an approach. Updating the Lanczos vectors after the QR
factorization �step 6 of Algorithm 2� is problematic in this
case.

Algorithm 1�, in the context of SIRL, can readily be used
to obtain all eigenvalues and vectors. Since the subsequent
Krylov subspaces are orthogonal, each subspace generates
the next set of eigenvalues. One can simply continue to com-
pute the eigenpairs in sets until m��=k�+ p�� plus the number,
t, of converged Ritz vectors exceeds or equals the number of
original basis functions, N. At this point m� would be larger
than or equal to the subspace of the remaining eigenvalues
�N− t�, so a restart algorithm cannot �and need not� be used
for the N− t eigenvalues. These remaining eigenvalues are
computed by a simple and relatively small orthogonal Lanc-
zos factorization �of size N− t�. Specifically, using algorithm

TABLE I. cpu time �seconds� and approximate number of matrix-vector multiplies for computing k
eigenvalues using IRL and CWL algorithms. N=the number of basis functions determined by maximum
Bessel function order, 
max.

IRL CWL


max N k cpu time Mv multiplies cpu time Mv multiplies

100 4001 500 113 1250 615 13000

100 4001 1000 399 2500 3116 65000

150 8945 500 378 1250 2896 14000

150 8945 1000 1143 2500 15566 71000

200 15853 500 1006 1250 9340 15000

200 15853 1000 2658 2500 46847 75000

FIG. 1. �Color online� Relative cpu time �SIRL/IRL� vs k, the
number of wanted eigenpairs, computed for different number of
basis functions �N� and fixed k /k�=5.

FIG. 2. �Color online� Relative cpu time �SIRL/IRL� vs N, the
number of basis functions, computed for different k and k� such that
k /k�=5.

REZA RAJAIE KHORASANI AND RANDALL S. DUMONT PHYSICAL REVIEW E 79, 036708 �2009�

036708-4



1� a small Krylov subspace of size N− t�m� is constructed
orthogonal to the previous Ritz vectors—the associated Ritz
values are the remaining eigenvalues.

SIRL can also easily be adapted to situations where all
eigenvalues below a certain threshold are wanted, and it is
not known how many there are. Since SIRL obtains the k
eigenvalues in sets of k� all we have to do is scan the eigen-
values of each set as they are generated. Once there are no
further Ritz values below threshold, the process is termi-
nated.

III. RESULTS AND DISCUSSIONS

To compare the performance of Lanczos without reor-
thogonalization �CWL�, IRL, and SIRL, we calculated the
eigenvalues and eigenvectors �even solutions only� of the
cardioid billiard using Robnik’s method. The method in-
volves a conformal mapping of a family of billiards to the
unit disk. The Schrödinger equation for the unit disk is dis-
cretized by invoking the basis functions �for even solutions�,

�n,
 = Rn,
J
�
,nr�cos 
� ,

where �r ,�� are polar coordinates in the x ,y plane, J
 are
Bessel functions of order 
, and Rn,
 are normalization con-
stants. 
,n is the nth zero of the order 
 Bessel function. The
family of cardioidlike billiards studied by Robnik is charac-
terized by two parameters, A and �. Our particular choice,
with an area of �, corresponds to �=0.5 and A=1 /	1+2�2.
This is the cardioid billiard with a cusp in its boundary. In
this case, a large basis set is required to converge the eigen-
states in the neighborhood of the cusp, making the computa-
tion of a very large number of eigenvalues quite challenging.
A finite basis was chosen such that the order of the Bessel
functions ranged from 
=0 to 
=
max, while n ranged from

1 to
	�
max

2 −
2�
2 +1. All computations were done on an AMD 3

GHz processor PC with 3 GB of RAM.
Table I shows cpu times for calculating eigenvalues using

IRL and CWL. The first 500 and 1000 eigenvalues were
calculated using 4001 �
max=100�, 8945 �
max=150�, and
15853 �
max=200� basis functions. IRL computations used
p=k �number of wanted eigenvalues�. The results clearly
demonstrate that CWL is slower than IRL. As the number of
basis functions and the cost of each matrix-vector multiply
increase CWL becomes successively less efficient, in terms
of cpu time. If eigenvectors are also required then CWL
would be even less efficient since it requires repeating the
Lanczos iteration. IRL was able to obtain 500 eigenvalues
and eigenvectors with a total of 1250 matrix-vector multi-
plies, and 1000 eigenpairs with 2500 matrix-vector multi-
plies �for all three basis sets�. CWL required many more
matrix-vector multiplies.

To compare SIRL and IRL, eigenvalues and vectors were
computed for different numbers of basis functions. In all
cases we chose k= p �for IRL� and k�= p� �for the Krylov
subspace divisions of SIRL�. As for cpu time, SIRL could be
faster or slower than IRL, depending on k, k� and the number
of basis functions. Tables II and III show some typical re-
sults. We found that usually �but not always�, as the number

of wanted eigenpairs, k, increases for fixed number of basis
functions, the relative efficiency of SIRL �i.e., in comparison
to IRL� increases. Figure 1 shows the ratio of cpu times
�SIRL/IRL� to calculate k eigenpairs vs k, for k /k�=5. An-
other trend we observed was that usually �again, not always�
the relative efficiency of SIRL decreases with increasing size
of basis set �see Fig. 2�. However, in all cases, the efficiency
of SIRL is very similar to that of IRL—the ratio of cpu times
varies within the range 0.7 to 1.2.

Note that the purpose of SIRL is not be to faster than IRL
in terms of cpu time, but to be able to handle larger basis
sets. SIRL allows the possibility of writing converged Ritz
vectors to disk. Although this makes the algorithm slower,
one can work with much larger basis sets than possible using
IRL. We found that, even when writing Ritz vectors to
disk, SIRL is still considerably faster than CWL. Using SIRL
we calculated the first 6000 eigenvalues �Table IV� and
eigenvectors �Fig. 3� of the cardioid �even solutions� using a
basis set of 48 008 functions, �n,
 �
max=390, with n ranging

1 to
2	�
max

2 −
2�
5 +1�. Calculations were carried out in sets of

k��=p��= k
6 =1000. The converged Ritz vectors were written

to and read from disk in sets of 1000 at time. The 6000

TABLE II. cpu time �seconds� for computing k eigenvalues and
eigenvectors using IRL and SIRL, for a basis set of 22 793 func-
tions �
max=240�.

k= p k�= p� SIRL IRL

1000 100 8759 5392

1000 200 6582 5392

1000 250 6347 5392

1000 500 5575 5392

1600 100 18847 10983

1600 160 15178 10983

1600 200 13885 10983

1600 320 11771 10983

1600 400 11320 10983

1600 800 9711 10983

TABLE III. cpu time �seconds� for computing eigenvalues and
eigenvectors using IRL and SIRL, for a basis set of 8945 functions
�
max=150�.

k= p k�= p� SIRL IRL

1000 100 1702 1327

1000 200 1266 1327

1000 250 1652 1327

1000 500 1606 1327

1600 100 3949 3080

1600 160 3153 3080

1600 200 2887 3080

1600 320 2508 3080

1600 400 2468 3080

1600 800 2363 3080

IMPLICIT RESTART LANCZOS AS AN EIGENSOLVER PHYSICAL REVIEW E 79, 036708 �2009�

036708-5



computed eigenvalues and eigenvectors are accurate to at
least eight digits—the first 
3400 eigenvalues are accurate
to ten digits. The cpu time for SIRL was approximately 6
days—23 855 Lanczos iterations �i.e., matrix-vector multi-
plies� were required in total. The computation time for CWL
was much too long to be practical �several months�.

Besides taking greater cpu time CWL also proved to be
less reliable. With CWL, based on the errors estimated for
the computed eigenvalues, one has to determine whether all
the desired eigenvalues have been computed or not. We
found this to be prone to error, particularly when many ei-
genvalues are required. In many cases we found that after
sufficiently many iterations to yield error estimates of less
than 10−9–10−10 for all converged eigenvalues, a few eigen-
values were still missing. This was found even when we
were looking for on the order of 500 eigenvalues, not just
when we were seeking 6000 eigenvalues.

The cardioid eigenvalue computations show that when
many eigenvalues are wanted, IRL is superior to CWL and
the relative efficiency of IRL over CWL increases with in-
creasing basis set size, and increasing number of wanted ei-
genvalues �see Table I�. To further investigate the efficiency
of CWL and IRL we compute rovibrational levels of the
HCN/HNC molecular system �see Ref. �35� for details�.
Table V shows the cpu time required for computing 100
rovibrational levels �total angular momentum J=0,1 ,2� of
HCN/HNC with even total parity. Table VI shows the corre-
sponding number of matrix-vector multiplies. For a basis set
size of 16 440 basis functions �J=0�, the performance of
CWL is comparable to IRL. However as the number of basis
functions increases �for J�0�, IRL becomes more efficient.
The results indicate that, even when the number of wanted
eigenvalues is not great, for larger matrices IRL is more ef-
ficient than CWL.

Although the computations in this paper were all done
using the real symmetric Lanczos algorithm, it should be
noted that, using the complex symmetric Lanczos algorithm,
we also performed large scale eigenvalue computations for
scattering Hamiltonians with complex absorbing potentials.
We observed that the complex version of the CWL algorithm
for identifying spurious eigenvalues has lower resolution

than its real counterpart and it is more prone to missing ei-
genvalues or failing to spot spurious eigenvalues.

Some final comments are in order. �1� In IRL the only
parameter that has to be chosen by the user �besides the
number of wanted eigenvalues of course� is p, the unwanted
portion of the Krylov subspace. Our choice of p=k is the
most natural choice. Choosing p�k makes IRL even more
efficient, but increases memory requirements. Note that the
number of restarts is not set by the user. The algorithm sim-
ply restarts, when necessary, until all eigenvalues of interest
are converged. �2� We also chose k�= p� in SIRL. For obtain-
ing the 6000 eigenvalues we set k�= k

6 . If many eigenvalues
are desired k� can be chosen based on memory restrictions. A
lager k� requires writing less Ritz vectors to disk and reduces
cpu time. �3� The efficiency of Lanczos depends on the dis-
tribution of eigenvalues. The less dense the area of interest in
the spectrum, the faster Lanczos converges. This is true for
all Lanczos algorithms—CWL, IRL, and SIRL. The relative
efficiency of these algorithms is much the same for any
broad class of matrices, such as molecular Hamiltonians
�36�. �4� If the number of wanted eigenvalues is small, CWL
will be more competitive with IRL. However, if the number
of eigenvalues is large, CWL becomes increasingly less
competitive—more so if eigenvectors are also wanted. Note
that because so many eigenvalues are computed in this study,
there is a wide range of local eigenvalue distributions repre-
sented. Consequently, the study is pretty representative of the
performance one can expect for other large scale eigenvalue
computations with generic molecular Hamiltonians. �5� As
the number of basis functions increases IRL becomes more
efficient over CWL. Increase in basis set size increases both
the reorthogonalization cost in IRL and the matrix-vector
multiplication cost. However it appears that the adverse ef-
fect on performance is much more severe for CWL because
of the many more matrix-vector multiplies.

IV. CONCLUSION

In this paper we studied the CWL and IRL algorithms for
calculating eigenvalues and eigenvectors. Although CWL is
most memory efficient, our results indicate that IRL is faster

TABLE IV. Some eigenvalues of the cardioid �even solutions� calculated using SIRL and a basis size of

48008 functions, �n,
, with 
max=390, and n ranging 1 to
2	�
max

2 −
2�
5 +1.

i Eigenvalue i Eigenvalue i Eigenvalue

1 6.0631286 4000 32188.944 5990 48144.968
2 16.646321 4001 32196.407 5991 48155.166
3 26.074062 4002 32202.870 5992 48158.595
4 32.931041 4003 32215.970 5993 48171.353
5 41.999007 4004 32222.640 5994 48178.853
6 53.162826 4005 32231.216 5995 48185.4845
7 61.347648 4006 32236.845 5996 48192.191
8 67.297500 4007 32242.625 5997 48195.644
9 76.097442 4008 32248.294 5998 48205.107
10 86.457570 4009 32258.747 5999 48212.331

] ] 6000 48226.001

REZA RAJAIE KHORASANI AND RANDALL S. DUMONT PHYSICAL REVIEW E 79, 036708 �2009�

036708-6



FIG. 3. �Color online� Contour plots of the even eigenvectors of the cardioid ���i�2� corresponding to eigenvalues �a� E1=6.0631286, �b�
E2=16.646321, �c� E3=26.074062, and �d� E101=833.80725, �e� E105=866.46615, �f� E1000=8096.6728. Panels �d� and �e� show evidence of
scarring by classical periodic orbits—including diffraction orbits �34�. At high energies, eigenfunctions such as that shown in panel �f� are
scarred by many orbits and are closer to the ergodic ideal.

IMPLICIT RESTART LANCZOS AS AN EIGENSOLVER PHYSICAL REVIEW E 79, 036708 �2009�

036708-7



and more reliable. We also presented an alternate implemen-
tation of IRL which we call SIRL. SIRL can be faster or
slower than IRL depending on the number of wanted eigen-
values, the number of basis functions, and the subdivisions
of Krylov subspace carried out in SIRL. However, the dif-
ference in speed of the two algorithms is small—SIRL was
never more than 20% slower, and up to 30% faster. SIRL
uses previously converged Ritz vectors in constructing the
Krylov subspace and enables working with smaller Krylov
subspaces. The Ritz vectors can be written to disk, at the
expense of speed, allowing much larger basis sets than pos-
sible with IRL. SIRL was found to be faster than CWL even
when Ritz vectors were written to and read from disk. SIRL
also allows computation of all eigenvalues of a matrix, or all
eigenvalues below a threshold without an a priori estimate of
the number of such eigenvalues. Most importantly, because
reading and writing from disk can be done efficiently for
SIRL, it affords computations of very large numbers of ei-
genvalues. Such large sets of eigenvalues are very much of
interest in studies of quantum chaos �37�.

Based on our study of CWL, IRL, and SIRL, we find that
IRL and SIRL are superior to CWL for calculating large
numbers of eigenvalues and eigenvectors and should be the
algorithm of choice, particularly for complex symmetric ma-
trices. If only a small number of eigenvalues are desired,
then CWL is certainly adequate. However, it should be noted
that IRL and SIRL would work just as well in such cases. If
memory requirements do not allow storing m Lanczos vec-
tors, then SIRL is specifically recommended, with Ritz vec-
tors written to disk. SIRL is also recommended if one wants
to compute all eigenpairs of a matrix, or if the number of
wanted eigenpairs �k� is not known beforehand. We have
seen that the Lanczos algorithm without reorthogonalization
�CWL� is less reliable and slower than both IRL and SIRL
�not only for the cardioid problem�, and should be used only
as a last resort—i.e., if memory requirements are so prohibi-
tive that both IRL and SIRL become impractical—or perhaps
if the desired number of eigenvalues is rather small and
eigenvectors are not required.

ACKNOWLEDGMENT

We wish to thank the Natural Sciences and Engineering
Research Council of Canada for financial support.

APPENDIX: A SIMPLE METHOD FOR OBTAINING
LANCZOS EIGENVECTORS

In this section we briefly review an alternative method to
inverse iteration for obtaining eigenvectors of a tridiagonal
matrix �26�. Consider the eigenvalue equation,

Tmxi − �ixi = 0, �A1�

which constitutes a homogeneous system of m equations,

�k−1xik−1 + ��k − �i�xik + �kxik+1 = 0, k = 1, . . . ,m ,

�A2�

where �0=�m+1=0. Of the above m equations only m−1 are
linearly independent and one is redundant. One way to ob-
tain the eigenvectors of Tm is to set an element of xi equal to
1, and use the above recursion relation to obtain the other
elements. An obvious choice is to set xi1=1 and use Eq. �A2�
with k=2 to m−1, thereby dropping the last equation as re-
dundant. Another obvious choice would be to set xim=1 and
drop the first equation. Although in exact arithmetic any of
the m equations can be dropped with no consequence,
Wilkinson �38,39� showed that in finite precision arithmetic
the m equations are not equally redundant, the computed xi is
highly sensitive to the choice of which equation to drop and
setting xi1=1 or xim=1 can lead to catastrophic results, as we
also observed frequently in our computations.

Assuming that the jth equation is to be dropped we can
rearrange Eq. �A1� as,

�
�̄1 �1 0 ¯ 0

�1 � �

0 � �̄ j−1 0 � ]

� j−1 0 � j

] � 0 �̄ j+1 � 0

� � �m−1

0 ¯ 0 �m−1 �̄m

��
xi1

]

xij−1

0

xij+1

]

xim

�
= − �

0 0 ¯ 0

0 � �

� 0 � j−1

] 0 � j 0 ]

� j 0 �

� � 0

0 ¯ 0 0

��
0

]

0

xij

0

]

0

� = �
0

]

− � j−1xij

− �̄ jxij

− � jxij

]

0

� ,

where �̄k=�k−�i, k=1 to m. The above system of equations
reduces to two smaller systems of equations,

TABLE VI. Approximate number of matrix-vector multiplies
for calculating 100 even rovibrational levels of HCN/HNC �N is the
number of basis functions�.

J=0, N=16440 J=1, N=32874 J=2, N=49268

IRL 1230 1366 1548

CWL 2500 3500 3600

TABLE V. cpu times �in seconds� for calculating 100 even rovi-
brational levels of HCN/HNC �N is the number of basis functions�.

J=0, N=16440 J=1, N=32874 J=2, N=49268

IRL 115 380 705

CWL 130 660 1200

REZA RAJAIE KHORASANI AND RANDALL S. DUMONT PHYSICAL REVIEW E 79, 036708 �2009�

036708-8



�
�̄1 �1 0 ¯

�1 � � �

0 � � � j−2

� � j−2 �̄ j−1

��
xi1

]

]

xij−1

� = �
0

]

0

− � j−1xij

� , �A3�

and

�
�̄ j+1 � j+1 0 ¯

� j+1 � � �

0 � � �m−1

] � �m−1 �̄m

��
xij+1

]

]

xim

� = �
− � jxij

0

]

0
� ,

�A4�

coupled via

� j−1xij−1 + � jxij+1 + �̄ jxij = 0. �A5�

Setting xij =1, we can drop Eq. �A5� �the jth equation� and
solve two inhomogeneous systems of equations for the ele-
ments of xi. In exact arithmetic, Eq. �A5� will be automati-
cally satisfied by the solution to Eqs. �A3� and �A4�. How-
ever, in finite precision arithmetic the eigenvalues are not
known to full precision and in general Eq. �A5� will not be
satisfied exactly. Instead we have

� j−1xij−1 + � jxij+1 + �̄ jxij = � j��i� .

The most redundant equation, i.e., the optimum value of j, is
the one which produces the smallest residual, �� j�. Below we
summarize a method for obtaining the � j��i�. The reader is
referred to Ref. �26� for proofs and details.

The method is based on the LDLT and UDUT factoriza-
tion of the tridiagonal matrix J=Tm−�iI. The L and U ma-
trices are lower and upper bidiagonal, respectively, with di-
agonal elements equal to unity. To implement the method,
only the diagonal D matrices are required. In the LDLT fac-
torization the elements of the diagonal D matrix can be com-
puted from the recursion,

dk = Jkk −
Jkk−1

2

dk−1
= ��k − �i� −

�k−1
2

dk−1
k = 2, . . . ,m ,

starting with

d1 = J11 = �1 − �i.

The UDUT factorization results in

�k = ��k − �i� −
�k

2

�k+1
k = m − 1, . . . ,1,

for the diagonal elements of D, with

�m = �m − �i.

Once the D matrices have been computed the following re-
cursion can be used to compute the �k��i�,

�k+1 = �k
�k+1

dk
, k = 1, . . . ,m − 1, �A6�

and

�k = �k+1
dk

�k+1
, k = m − 1, . . . 1, �A7�

with

�1 = �1 and �m = dm. �A8�

To compute the eigenvectors of Tm one would
�1� compute the diagonal D matrices in the LDLT and

UDUT factorization of Tm−�iI,
�2� find the optimum j �i.e., the one resulting in the small-

est �� j��,
�3� set xij =1, drop the jth equation and solve the remain-

ing system of equations �Eqs. �A3� and �A4��, and
�4� normalize xi in the end.
Note that, in step �1�, if any of the dk or �k are too small

they should be set equal to an �, where � is a threshold of the
order of the machine epsilon. Also, in step �2�, the best way
to solve the system of equations is to take advantage of the
LDLT and UDUT factorizations, and use the following recur-
sions �26�.

xik = − ��k

dk
�xik+1 k = j − 1, . . . ,1,

and

xik = − ��k−1

�k
�xik−1 k = j + 1, . . . ,m ,

�1� J. K. Cullum and R. A. Willoughby, Lanczos Algorithms for
Large Symmetric Eigenvalue Computations, Vol. 1: Theory
�SIAM, Philadelphia, 2002� .

�2� G. H. Golub and C. F. Van Loan, Matrix Computations, 3rd ed.
�Johns Hopkins University Press, Baltimore, 1996�.

�3� Templates for the Solution of Algebraic Eigenvalue Problems:
A Practical Guide, edited by Z. Bai, J. Demmel, J. Dongarra,
A. Ruhe, and H. Van der Vorst �SIAM, Philadelphia, 2000�.

�4� C. Leforestier and N. Moiseyev, J. Chem. Phys. 103, 8468
�1995�.

�5� H. G. Yu and S. C. Smith, J. Chem. Phys. 107, 9985 �1997�.

�6� X. Wang and T. Carrington, Jr., J. Chem. Phys. 114, 1473
�2001�.

�7� B. Poirier and T. Carrington, Jr., J. Chem. Phys. 116, 1215
�2002�.

�8� J. H. Skone and E. Curotto, J. Chem. Phys. 116, 3210 �2002�.
�9� R. Chen and H. Guo, Chem. Phys. Lett. 369, 650 �2003�.

�10� J. C. Tremblay and T. Carrington, Jr., J. Chem. Phys. 122,
244107 �2005�; 125, 094311 �2006�.

�11� H. Guo, Rev. Comput. Chem. 25, 285 �2007�.
�12� R. Q. Chen and H. Guo, J. Comput. Phys. 136, 494 �1997�.
�13� Note that methods have been developed which can obtain a

IMPLICIT RESTART LANCZOS AS AN EIGENSOLVER PHYSICAL REVIEW E 79, 036708 �2009�

036708-9



small number of eigenvectors without storing Lanczos vectors
or redoing the Lanczos iteration. These methods combine
Lanczos and the filter diagonalization method. See Ref.
�12,30�.

�14� W. Karush, Pac. J. Math. 1, 233 �1951�.
�15� G. H. Golub and R. Underwood, in Mathematical Software III,

edited by J. R. Rice �Academic, New York, 1977�, pp. 361–
377.

�16� J. K. Cullum, BIT, Nord. Tidskr. Inf.behandl. 18, 265 �1978�.
�17� K. Wu and H. D. Simon, NERSC Lawrence Berkeley National

Laboratory, Technical Report No. LBNL-42982, 1999.
�18� K. Wu, A. Canning, and H. D. Simon, NERSC Lawrence Ber-

keley National Laboratory, Technical Report No. LBNL-
42917, 1999.

�19� D. Calvetti, I. Reichel, and D. C. Sorensen, Electron. Trans.
Numer. Anal. 2, 1 �1994�.

�20� R. Lehoucq, D. Sorensen, and C. Yang, ARPACK USERS
GUIDE: Solution of Large Scale Eigenvalue Problems With
Implicitly Restarted Arnoldi Methods �SIAM, Philadelphia,
1998�.

�21� R. B. Lehoucq and D. C. Sorensen, SIAM J. Matrix Anal.
Appl. 17, 789 �1996�.

�22� D. C. Sorensen, Center for Research on Parallel Computation,
Rice University, Technical Report No. CRPC-TR98775, 1998.

�23� M. C. Gutzwiller, Chaos in Classical and Quantum Dynamics
�Springer, New York, 1990�, p. 261.

�24� M. Robnik, J. Phys. A 17, 1049 �1984�.
�25� P. Arbenz, U. L. Hetmaniuk, R. B. Lehoucq, and R. S.

Tuminaro, Int. J. Numer. Methods Eng. 64, 204 �2005�.
�26� K. V. Fernando, SIAM J. Matrix Anal. Appl. 18, 1013 �1997�.
�27� I. Kosztin and K. Schulten, Int. J. Mod. Phys. C 8, 293 �1997�.
�28� E. J. Heller, Phys. Rev. Lett. 53, 1515 �1984�.
�29� T. Koslowski and W. vonNiessen, J. Comput. Chem. 14, 769

�1993�.
�30� H. Zhang and S. Smith, Phys. Chem. Chem. Phys. 3, 2282

�2001�.
�31� See EPAPS Document No. E-PLEEE8-79-114903 for

pseudocode. For more information on EPAPS, see http://
www.aip.org/pubservs/epaps.html.

�32� See pp. 501–503 of Ref. �2�.
�33� J. Sakr �unpublished�.
�34� M. Brack and R. K. Bhaduri, Semiclassical Physics �Addison

Wesley, New York, 1977�.
�35� R. Rajaie Khorasani, Ph.D thesis, McMaster University, 2009.
�36� H.-S. Lee and J. C. Light, J. Chem. Phys. 120, 4626 �2004�.
�37� See, for example, B. Dietz, A. Heine, V. Heuveline, and A.

Richter, Phys. Rev. E 71, 026703 �2005�. 3000 eigenvalues for
a set of two-dimensional �2D� billiards were computed using a
cluster of 64 AMD processors.

�38� J. H. Wilkinson, Comput. J. 1, 90 �1958�.
�39� J. H. Wilkinson, The Algebraic Eigenvalue Problem �Claren-

don, Oxford, 1695�.

REZA RAJAIE KHORASANI AND RANDALL S. DUMONT PHYSICAL REVIEW E 79, 036708 �2009�

036708-10


